
Natural Language Programming
Using Class Sequential Rules

Cohan Sujay Carlos
Aiaioo Labs

Bangalore, India
cohan@aiaioo.com

Outline

• Introduction

• Motivation

• Class Sequential Rules (CSRs)

• Extensions to CSRs

• Corpus

• Experiments

• Related Work

What is Natural Language
Programming?

 “In order to make machines significantly
easier to use, it has been proposed (to try) to
design machines that we could instruct in our
native tongues.”

 - Edsger W. Dijkstra

1978 paper “On the foolishness of
Natural Language Programming”

• Natural Language is inadequate for math …
“Greek math became stuck because it
remained a verbal, pictorial activity …”

• A sharp decline in people’s mastery of their
own languages in the last decades

But things have changed since 1978

Computers are no longer just used for math.

They are (mostly?) used for:

• communication

• entertainment

• knowledge management (query languages)

• controlling hardware (command languages)

Overview

 Developed a system for Natural Language
Programming using Class Sequential Rules

 Proposed a set of programming primitives

 Evaluated the system on the task of identifying
those primitives and the entities they contain

Class Sequential Rule

 Sequence of symbols i1 – in that matches text in
which the symbols appear in that order

Example, I = < i1 i2 i3 > where i1 i2 i3 are unigrams

Matches: Does not match:

A i1 B i2 C D i3 E A B i2 i1 C D i3 E

i1 i2 R S i3 A B i2 C D i3 E

i1 i2 i3 M N

Class Sequential Rule

 Placeholders xi – xn among the symbols i1 – in that
match text between the symbols on either side

Example, I = < i1 i2 x1 i3 > where i1 i2 i3 are unigrams

When I matches A i1 B i2 C D i3 E --- x1 equals ’C D’

When I matches i1 i2 R S i3 --- x1 equals ’R S’

When I matches i1 i2 i3 M N --- x1 equals ’’

Class Sequential Rules

Capabilities of the formalism:

• Identify types of sentences

• Extract entities from those sentences

Mapping to Natural Language Programming:

• Types = programming primitives

• Entities = variables, literals and expressions

Example

S = increment the value of x by 2 * 3

I1 = < increment of VARIABLE by EXPRESSION >

I1 matches S: increment the value of x by 2 * 3

VARIABLE = ‘x’

EXPRESSION = ‘2 * 3’

Example Continued

E = 2 * 3 (* 2 3)

I2 = < EXPRESSION * EXPRESSION >

I2 matches E: 2 * 3

EXPRESSION = ‘2’

EXPRESSION = ‘3’

Example Continued

Mapping to Natural Language Programming:

• Types = programming primitives

• Entities = variables, literals and expressions

increment the value of x by 2 * 3

(+= x (* 2 3))

Class Sequential Rules

Overview

 Developed a system for Natural Language
Programming using Class Sequential Rules

 Proposed a set of programming primitives

 Evaluated the system on the task of identifying
those primitives and the entities they contain

Core Primitives
Type Arity Example

If 2 or 3 If x is 2 say “Hi”

Unless 2 Exit unless x is equal to 2

While 2 While x is 2, print “Yo!”

Until 2 Till x is 2, keep adding 1 to x

Continuation 1 Also, print x and increment x

Assignment 2 Let x be equal to 3

Other Primitives
Type Arity Example

Imperatives 0 to Infinity Say “Hi”

Questions 2 What is 3 * 2 ?

Y/N Questions 2 Is x equal to 2?

Some Expressions

Type Arity Example

Addition 2 x plus y

Subtraction 2 x minus y

Less than 2 x is less than y

Equality 2 x and y are equal

Disjunction 2 x or y

Conjunction 2 x and y

The only data types supported right now are numbers & strings

Intermediate Representation

Natural Language Form Intermediate Representation Form

If x equals y print x (if (= x y) (print x))

Assign y to x (= x y)

If x > y, let x be equal to y (if (> x y) (= x y))

Add x to y (+= x y)

while x is less than y, print
x and increment x.

(while (< x y) (& (print x) (+= x 1)))

Print x and then print y. (& (print x) (print y))

Overloading of & and = in the intermediate representation

But CSRs aren’t powerful enough

Three Difficult Sentences *

Also { x = 2 } .

Also , { x = 2 } .

Also { if x = 3 , ++x } .

Class Sequential Rules for Continuation

Also , EXPRESSION .

Also EXPRESSION .

* The flower braces indicate entity spans

CSR

• I = < i1 i2 i3 > where i1 i2 i3 are unigrams

CSR-EX

• I = < i1 i2 i3 > where i1 i2 i3 are n-grams

Extending CSRs

CSR-EXs are powerful enough

Three Difficult Sentences * EXPRESSION

Also { x = 2 } . x = 2

Also , { x = 2 } . x = 2

Also { if x = 3 , ++x } . if x = 3 , ++x

Class Sequential Rules for Continuation

Also NONE , EXPRESSION .

Also EXPRESSION .

* The flower braces indicate entity spans

Learning Algorithms for CSRs

• Bing Liu* described an algorithm for learning
Class Sequential Rules.

• Sequential Pattern Mining algorithms** can be
used.

 ** Research Report – Mining Sequential Patterns – Agrawal and Srikanth

* Opinion Feature Extraction Using Class Sequential Rules - Hu and Liu (2006)

Overview

 Developed a system for Natural Language
Programming using Class Sequential Rules

 Proposed a set of programming primitives

 Evaluated the system on the task of identifying
those primitives and the entities they contain

Evaluation Corpus

3,000 sentences (3 sets of 1000 each)

Online questionnaire:
1. How would you say "x = 2" in English?
2. How would you say "x != 2" in English?
3. How would you say "x < 2" ?

Download:
http://www.aiaioo.com/corpora/vaklipi2011/

http://www.aiaioo.com/corpora/vaklipi2011/

Systems Evaluated

• CSR-BL – CSRs using unigrams

• CSR-EX – CSRs using n-grams

• CSR-Man – Manually created n-gram CSR rules

Results

Setting Precision Recall F1

CSR-Man 89.2 +- 3.7 64.8 +- 6.2 73.0 +- 4

CSR-BL 85.7 +- 4.5 65.3 +- 5.9 73.1 +- 4

CSR-EX 88.4 +- 3.4 66.5 +- 5.6 74.8 +- 3

Identifying the type of the programming primitive

Identifying entity spans

Setting PSCS*

CSR-Man 52.4 +- 9.1

CSR-BL 50.2 +- 8.4

CSR-EX 49.7 +- 8.6

*Percentage of Sentences with Correct Spans

Performance

Setting Count Precision Recall F1

equality 298 79.0 +- 6 66.5 +- 19 71.9 +- 10

inequality 165 90.6 +- 14 78.6 +- 6 84.3 +- 9

less than 151 66.8 +- 10 88.4 +- 7 76.8 +- 8

if 118 84.2 +- 5 96.0 +- 8 89.8 +- 4

unless 15 100 +- 0 60.7 +- 15 77.6 +- 9

while 61 92.1 +- 2 88.0 +- 12 89.8 +- 11

until 86 98.8 +- 2 85.8 +- 15 91.9 +- 8

continue 48 78.3 +- 23 22.1 +- 11 40.0 +- 5

Counts of sentences in the corpus and performance

Prior Work

• “NLC” – Ballard and Biermann (1979)

• “Metafor” – Lieberman and Liu (2005)

• “Pegasus” – Knoell and Mezini (2006)

• Skeletons – Mihalcea et al (2006)

• Pacman – F. Pane and Brad A. Myers (2000)

Future Work

• Other algorithms

• Other languages

• Other data types

• Other domains of application

• Other corpora

• Translation models

End

 Natural Language Programming
Using Class Sequential Rules

Cohan Sujay Carlos
Aiaioo Labs

Bangalore, India
cohan@aiaioo.com

Weaknesses

• Not an evaluation of end-to-end performance

• The language of the responses elicited for the
corpus is possibly biased or unduly restricted
by the questions

• The error margins are high

• Performance measure is not independent of
number of types of programming primitives
recognized

